General existence results for abstract McKean-Vlasov stochastic equations with variable delay
نویسندگان
چکیده
Results concerning the global existence and uniqueness of mild solutions for a class of first-order abstract stochastic integro-differential equations with variable delay in a real separable Hilbert space in which we allow the nonlinearities at a given time t to depend not only on the state of the solution at time t, but also on the corresponding probability distribution at time t are established. The classical Lipschitz is replaced by a weaker so-called Caratheodory condition under which we still maintain uniqueness. The time-dependent case is discussed, as well as an extension of the theory to the case of a nonlocal initial condition. Two examples illustrating the applicability of the general theory are provided.
منابع مشابه
Abstract second-order damped McKean-Vlasov stochastic evolution equations
second-order damped McKean-Vlasov stochastic evolution equations N.I. Mahmudov aand M.A. McKibben b,∗ aDepartment of Mathematics, Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, TURKEY bGoucher College, Mathematics and Computer Science Department, Baltimore, MD 21204, U S A Abstract We establish results concerning the global existence, uniqueness, approximate and exact controllab...
متن کاملForward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection and the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for e...
متن کاملMean Field Forward-Backward Stochastic Differential Equations
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
متن کاملMean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons
We derive the mean-field equations arising as the limit of a network of interacting spiking neurons, as the number of neurons goes to infinity. The neurons belong to a fixed number of populations and are represented either by the Hodgkin-Huxley model or by one of its simplified version, the FitzHugh-Nagumo model. The synapses between neurons are either electrical or chemical. The network is ass...
متن کاملNonlinear SDEs driven by Lévy processes and related PDEs
In this paper we study general nonlinear stochastic differential equations, where the usual Brownian motion is replaced by a Lévy process. We also suppose that the coefficient multiplying the increments of this process is merely Lipschitz continuous and not necessarily linear in the time-marginals of the solution as is the case in the classical McKean-Vlasov model. We first study existence, uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016